点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:吉好彩票_吉好彩票
首页>文化频道>要闻>正文

吉好彩票_吉好彩票

来源:吉好彩票2023-02-03 17:48

  

吉好彩票

以人才赋能边疆高质量发展******

  作者:柴真(石河子大学党委书记)

党的二十大报告从“实施科教兴国战略,强化现代化建设人才支撑”的高度,对教育、科技、人才事业进行一体化部署。科技创新离不开人才支撑,高校作为培养和集聚人才的主阵地,在中国式现代化进程中发挥着不可替代的作用。只有切实提高人才自主培养质量,聚天下英才而用之,才能为全面建设社会主义现代化国家提供坚实的人才保障和智力支持。

地处西部边陲的石河子大学自诞生之日起,就致力于为屯垦事业培养汇聚大批英才。73年砥砺奋进,学校初心不改,努力建设具有兵团特色的人才高地,为边疆经济社会发展注入新动能。

精心育才,谋长远之计

人才是支撑发展的第一资源,关口前移,源头施策,就必须持续加强高质量人才队伍建设。石河子大学始终把人才工作摆在突出位置,培养造就了一支高水平师资队伍和一大批“下得去、留得住、用得好”的高素质人才。近年来,学校新增国家人才计划入选者27人、国家教学名师1人,新增教育部创新团队2个,“全国高校黄大年式教师团队”2个,60%以上的毕业生留在新疆和兵团建功立业,真正为边疆经济社会发展培养了人才、留住了人才。

党的二十大报告强调,培养造就大批德才兼备的高素质人才,是国家和民族长远发展大计。石河子大学将以党的二十大精神为指引,深入学习贯彻习近平总书记关于新时代人才工作的新理念新战略新举措,坚持党管人才原则,深入推进人才队伍建设“精准提拔一批、全力帮扶一批、重点奖励一批、全面培养一批、柔性引进一批”工程,通过对口支援计划、部省合建计划、高层次人才队伍建设支持计划、青年创新拔尖人才计划、“攀登计划”等政策,持续加大高层次人才和新进人才的自培力度,实现人才发展体制机制的全面优化。同时,学校将紧紧围绕立德树人根本任务,坚持用兵团高校的红色底蕴启智润心、培根铸魂,以兵团精神育人导向深化学生理想信念教育,以学科动态调整对接国家、兵团战略发展和区域人才需求,为培养有理想、敢担当、能吃苦、肯奋斗的紧缺人才、战略性新兴产业人才以及民生急需的专业人才打下坚实基础。

多方引智,汇发展合力

聚天下英才而用之,才能加快建设更具竞争力的人才中心和创新高地。多年来,石河子大学坚持用好用足西部和兵团人才政策,完善学校配套措施,国内外引智工作不断取得新成绩。五年来,学校新增中国工程院院士1人、双聘院士1人、院士工作站在站院士3人,引进国内绿洲学者107名、国外绿洲学者2名,专任教师中具有博士学位人数增加6%。其中,“面向绿洲生态的农业化学品工程学科创新引智基地”入选“高等学校学科创新引智计划”(简称“111”计划),实现了学校在国际人才引进方面的重大突破。

在深入实施人才强国战略的时代背景下,石河子大学将继续在汇聚人才上发力。通过“绿洲学者”“聚贤工程”等项目,不断完善高层次人才流入的制度保障。充分发挥事业的拴心留人作用,着力加强内涵建设,将高端人才引进与事业平台搭建有机结合,以一流学科为引领,以“高峰、高原、高地和培育学科”四级学科生态体系为基础,以博士点、重点实验室、工程中心、文科基地建设为抓手,全力为一流人才提供一流创新平台,实现人才发展与平台建设相互促进、共同提升。持续深化改革,推进落实放管服,健全评聘考贯通的考核评价机制,扎实做好评价考核激励后半篇文章,营造更加多元、更加开放,也更具吸引力的人才成长环境。

人尽其才,显时代担当

高校作为科技创新的策源地,如何更好地面向国家战略需求、服务中国式现代化建设,是必须回答好的时代命题。石河子大学始终坚持“以服务为宗旨,在贡献中发展”的办学理念,充分发挥人才资源和智力优势,引导师生把论文写在边疆大地上,努力为区域经济社会发展贡献石大智慧和力量。

2022年,石河子大学各级各类科研项目立项合同总经费比去年增加30%,创历史新高。围绕巩固脱贫攻坚成果与乡村振兴有效衔接,学校以科技特派员专家团队服务项目为抓手,发挥科技服务社会功能,赴基层连队、村庄重点围绕特色林果、设施农业、医疗综合服务等方面开展科技服务,共培训基层职工、农民9000余人次,服务带动农户5600余户,共带动受援对象增收近300万元,有效推动科技成果加快向现实生产力的转化,助力区域产业大发展。

党的二十大为学校更好地服务国家战略需求指明了方向。学校将着眼科研创新长效机制的建立,加强有组织科研,积极参与“揭榜挂帅”项目,主动承担国家、兵团重大科研项目,努力解决“卡脖子”技术问题,培育更多科技领军人才和科研创新团队,产出更多具有标志性的重大科研成果。立足兵团产业特色,学校将在荒漠生态、盐碱治理与农业提质增效、健康养殖、农产品加工等领域进一步加强应用技术推广与示范;瞄准区域长远发展需求,学校将继续推进兵团能源发展研究院建设,配套设置相关专业,在人才培养和科研转化上双管齐下。以科研团队为基础,以学校合作企业、“访惠聚”工作队和定点帮扶单位为基点,学校将持续组织专家教授深入基层团场和地方县(市)开展技术推广、培训和咨询服务,深化“专家+工作队+职工”“技术+产业”的科技合作模式,为兵团经济增长、转型升级、供给侧结构性改革注入源源不断的动力。

踏上波澜壮阔的新征程,石河子大学将深深锚定实现中华民族伟大复兴这一宏伟目标,坚定不移贯彻落实科教兴国战略,继续扎根兵团,赓续红色血脉,以更有激励性的人才培育机制、更有吸引力的人才引进政策、更有竞争力的人才发展平台,书写好不负党之所期、国之所系、民之所愿的“人才戍边”新篇章。

  《光明日报》( 2022年12月29日 05版)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • WNBA选秀大会 韩旭第14顺位被纽约自由人选中

  • 火箭勇士死磕!雄鹿战绿军!神器小炮剧透季后赛

独家策划

推荐阅读
吉好彩票男子因毒驾被注销驾照 仍开车3年236次违法未处理
2024-02-23
吉好彩票雍和宫门口千年龟骗局:70元鳄龟卖1600元
2023-06-10
吉好彩票 不愿单方面让步,日本拒绝对美国扩大农业市场准入
2023-10-29
吉好彩票黑龙江大兴安岭地下发现罕见22斤“太岁”
2023-07-12
吉好彩票怕衰老?这个“年轻因子”了解一下
2023-07-15
吉好彩票云南清水河边检站助力3万余吨境外甘蔗顺利通关
2024-02-06
吉好彩票 托育品牌纽诺教育完成数千万B轮融资,3年计划营收5-6亿元
2023-07-01
吉好彩票真的能“心想事成”!心理专家揭露背后原理
2024-03-27
吉好彩票四川蓬安:春耕备耕忙
2023-06-22
吉好彩票女副局长与群众座谈大耍官威:你哪小区的 记下来
2023-06-11
吉好彩票出门问问 TicWatch C2 体验:实用又有高颜值
2024-01-11
吉好彩票西甲-贝尔丢单刀 小将送点 皇马大轮换客负垫底队
2024-01-13
吉好彩票人物志之SN.XiaoAL——雄狮壮志之心
2024-01-20
吉好彩票周杰伦晒与儿子女儿合影
2023-08-06
吉好彩票国安4-1一方 开局7连胜创纪录
2024-01-24
吉好彩票92岁退伍老兵散步被撞倒 司机将老人抛入窨井致死
2023-12-20
吉好彩票 谢霆锋爸爸不甘寂寞 82岁谢贤密会电眼美女
2024-03-06
吉好彩票新游戏越来越少,任天堂3DS的生命周期基本结束了
2023-12-10
吉好彩票超过旧金山 纽约成为世界最好科技城市
2024-01-13
吉好彩票 刚买一年价格掉一半 新能源车为啥转手就尴尬?
2024-03-17
吉好彩票三度缺席白宫记协晚宴 特朗普又骂媒体
2023-10-16
吉好彩票卡纳瓦罗放弃国足主帅职位
2023-08-19
吉好彩票格调样板间:想要比苏大强躺得还舒服
2024-03-12
吉好彩票交通运输部:五一假期高速路小客车免费通行
2024-04-26
加载更多
吉好彩票地图